摘要
高光谱遥感图像具有特征(波段)数多、冗余度高等特点,因此特征选择成为高光谱分类的研究热点。针对此问题,提出了空间结构与光谱结构同时保持的高光谱数据分类算法。考虑高光谱图像的物理特性,首先对图像进行加权空谱重构,使图像的空间结构信息自动融入光谱特征,形成空谱特征集;对利用最小二乘回归模型保存数据集的全局相似性结构的基础上,加入局部流形结构正则项,使挑选的特征子集更好地保存数据集的内在本质结构;讨论了窗口大小和正则参数对分类精度的影响。对Indian Pines、Pavia U和Salinas数据集的实验表明,该算法得到的特征子集的总体分类精度达到93.22%、96.01%和95.90%。该算法不仅充分利用了高光谱图像的空间结构信息,而且深入挖掘了数据集的内在本质结构,从而得到更有鉴别性的特征子集,相比传统方法明显提高了分类精度。