针对现有的交通流速度预测模型使用唯一数据集且模型单一的问题,提出一种时间序列与人工神经网络相结合的预测模型。该模型通过时间序列分别对实时数据和历史数据建模预测,并应用人工神经网络调整实时数据和历史数据的预测值。实验结果表明该预测模型能够将预测误差控制在7%以内,且能够对不同输入参数下的短时交通流速度进行有效预测。