摘要

目前多数说话人识别算法均在干净环境下进行,在噪声环境下的效果较差.为提升噪声环境下说话人识别的正确率,提出一种新的特征提取方法与识别模型WPGT.利用小波包分解高频和低频信号,Gammatone滤波器组模拟人耳听觉系统处理非线性信号,从而提取更完备的说话人语音特征,采用卷积神经网络对特征进行训练并完成说话人识别.基于开源语音数据集、噪声融合数据集,将本研究方案与常用的声纹特征提取方法MFCC和Gammatone进行对比.实验结果表明,在噪声环境下,本研究所提WPGT方法的声纹识别精度相较于MFCC和Gammatone分别提升10.63%和16.91%,具有更好的抗噪声能力.