摘要

随着富媒体展现形式被越来越多地引入搜索交互界面,搜索引擎的结果页面呈异质化和二维模块展现形式,这对传统的点击预测模型提出了巨大的挑战。针对这一情况,我们对实际搜索引擎结果页面的多模态结果进行了分析,构建了一个结合深度神经网络和点击模型的框架,该框架既包含了神经网络的特性,又利用了点击模型的预测能力。我们希望利用这个框架挖掘出多模态信息与文本信息之间的相关性,使之具有描述异质化结果和二维模块展示形式的能力。实验表明,我们的框架相较于传统的点击模型在点击预测性能上有显著提升,但由于搜索引擎的多模态结果内容复杂,仅利用多模态结果的底层特征,即使使用深度神经网络,从中能够挖据出的语义相关性较弱。

  • 单位
    清华信息科学与技术国家实验室; 智能技术与系统国家重点实验室