摘要

卷积神经网络中的汇合层基于局部相关性原理进行亚采样,在减少数据量的同时保留有用信息,从而有助于提升泛化能力.同时,汇合层可以有效提高感受野.经典的最大汇合采用赢者通吃策略,这有时会影响网络的泛化能力.为此提出集成最大汇合,用于替代传统卷积神经网络中的汇合层.在每个局部汇合区域,集成最大汇合以p的概率使输出最大的神经元失活,激活输出第二大的神经元.集成最大汇合可以看作多个基础潜在网络的集成,也可以理解为一种输入经历一定局部形变下的经典最大汇合过程.实验结果表明,相比经典汇合方法及其他相关汇合方法,集成最大汇合取得了更好的性能.DFN-MR是近期主流结构ResNet的一个衍生,相比ResNet,DFN-MR有着更多的基础潜在网络数目,同时避免了极深网络.保持其他超参数不变,通过将DFN-MR中步长为2的卷积层改为集成最大汇合串联步长为1的卷积层的结构,可以使网络性能得到显著提高.

  • 单位
    计算机软件新技术国家重点实验室; 南京大学