摘要

通过分析杆塔镂空的结构特征,提出了一种基于杆塔梯度方向直方图(HOG)的由远及近杆塔部件检测方法。使用不同方位下杆塔HOG特征训练多层感知机(MLP),得到训练后的分类模型,将航拍图像输入到分类模型中识别杆塔的方位,最终实现了局部目标的检测。相比于深度学习神经网络,该方法的分类特征更加明确,更具有代表性。实验结果表明,所提方法的检测准确率比Faster RCNN(Regions with Convolutional Neural Networks)方法高27.9%,运算时间比Faster RCNN减少70.6%。所提方法适用于在开阔环境下利用无人机对杆塔方位及其局部部件的精确检测。

  • 单位
    上海大学; 通信与信息工程学院; 国网山东省电力公司