摘要
假定(X,‖·‖)为可分的Banach空间,X*为其对偶空间,X*可分。本文首先给出了集值逆上鞅Doob分解的概念,其次,证明了实值逆上鞅Doob分解定理,在此基础上,利用支撑函数给出了集值逆上鞅可Doob分解的一个充分必要条件。同时证明了一维实空间R1中集值逆上鞅具有Doob分解,最后,用例子说明在二维实空间R2并非所有的集值逆上鞅都具有Doob分解。
-
单位西安电子工程研究所; 中国人民武装警察部队工程大学
假定(X,‖·‖)为可分的Banach空间,X*为其对偶空间,X*可分。本文首先给出了集值逆上鞅Doob分解的概念,其次,证明了实值逆上鞅Doob分解定理,在此基础上,利用支撑函数给出了集值逆上鞅可Doob分解的一个充分必要条件。同时证明了一维实空间R1中集值逆上鞅具有Doob分解,最后,用例子说明在二维实空间R2并非所有的集值逆上鞅都具有Doob分解。