摘要
风电机组运行环境恶劣、机组设备衰退是近年来齿轮箱故障频发的主要原因,其设备状态与机组安全性、运营成本息息相关。面对这一挑战,利用监控与数据采集系统数据,提出一种将保局投影、核极限学习机和信息熵相结合的风电机组齿轮箱故障预警方法。采用保局投影对风电机组状态参数进行特征提取后,使用核极限学习机建立状态参数预测模型,最后辅以改进的加入信息熵概念,可准确预警异常工况。以河北省张家口某一风电场的运行数据作为实例进行研究,仿真结果表明,所提算法至少能提前2天预警潜在故障,验证该预警方法的有效性与实效性。
-
单位华北电力大学; 中国舰船研究设计中心; 新能源电力系统国家重点实验室