针对现有遗传算法在求解机器人路径规划存在的收敛速度慢、易陷入局部最优等缺点,提出一种基于自适应遗传算法的机器人路径规划方法。该方法引入逆转算子,增加插入算子和删除算子,提出新的自适应策略对交叉和变异概率进行调整,更好地避免陷入局部最优,提高算法寻优效率。该算法在MATLAB和Inte3D平台中进行算例验证,实验结果表明改进的自适应遗传算法比现有遗传算法更为有效。