摘要
随着社会的发展,身份信息的安全问题日益凸显。为解决用户身份识别过程中受环境影响较大,以及掌纹识别时提取掌纹特征复杂的问题,本文进行了"基于卷积神经网络(CNN)的掌纹识别"的研究。运用该算法的优势在于简化了掌纹识别的前期预处理,可以直接将采集的原始图像进行输入,然后识别。通过卷积操作和最大池化操作,减少了训练参数量,大大节约了时间。最后使用Softmax分类器对结果进行分类。实验结果显示,该方法对不同人的掌纹有较高的识别率,克服了传统掌纹识别精度差,识别时间长,人工提取特征困难的缺点。
- 单位