摘要

为了应对以云服务器为中心的深度学习模型存在实时性较差的缺点,提出一种基于边缘计算的按需优化的深度学习模型,模型基于通信带宽和延时限制,自适应地将深度学习模型分配到终端设备和边缘服务器上并进行裁剪,从而最大化计算精度。仿真实验结果表明,相比仅仅将深度学习模型部署在终端设备或边缘服务器上,该算法具有更强的计算优势。