ARIMA模型与GM(1,1)模型在痢疾发病数预测中的比较研究

作者:宋媛媛; 王雷; 熊甜; 胡樱*
来源:实用预防医学, 2019, 26(07): 888-892.
DOI:10.3969/j.issn.1006-3110.2019.07.034

摘要

目的分别应用求和自回归滑动平均模型(autoregressive integrated moving average model,ARIMA)和灰色模型(gray forecast model)GM(1,1)对湖北省痢疾发病数进行预测,比较两种方法的预测效果,为选择更适宜的方法提供依据。方法分别应用2001-2015年月发病数及年发病数建立ARIMA模型和GM(1,1)模型,用平均误差率(mean error rate,MER)和决定系数(coefficient of determination,R2)评价拟合效果,并采用2016年实际发病数验证预测效果,选择准确性更高的模型对2017-2018年发病数进行预测。结果建立的ARIMA模型为SARIMA(1,0,0)(0,1,1)12,GM(1,1)模型为■(t+1)=-274 126.038e-0.067 467t+293 275.08,两模型的平均误差率(mean error rate,MER)分别为3.55%和14.78%;决定系数(R2)分别为0.993和0.960,2016年实际发病数与两模型预测发病数的残差分别为635和3 240;相对误差分别为16.54%和84.38%,综合考虑各项评价指标采用ARIMA模型对2017-2018年发病数进行预测分别为4 286和4 011。结论通过拟合及预测评价指标的比较ARIMA模型均优于GM(1,1)模型,可得ARIMA模型对湖北省痢疾发病数的预测比GM(1,1)模型有较明显的优势,能更准确的处理时间序列类型的资料,此预测结果准确具有实用价值,可为卫生防治工作提供依据。

全文