摘要

基于深度学习的雨滴图像增强方法普遍存在高度依赖配对样本数据集,雨滴去除后图像背景细节模糊等问题。对此,提出一种双重注意力引导的弱监督雨滴图像增强方法。该方法设计构建弱监督雨滴图像增强网络,仅需来自雨滴图像域与干净图像域的图像进行训练,可有效降低对配对样本数据集的依赖性;同时,将双重注意力引入生成网络,引导特征提取与多分支掩模生成,掩模同输入的雨滴图像融合后,获得背景清晰的干净图像,实现雨滴图像增强。实验结果表明,该方法在Raindrop数据集上PSNR达到27.071 1 dB,SSIM达到0.899 6,更好地保留了图像背景细节与颜色信息,证明该方法的可行性与有效性。

全文