摘要
滚动轴承的智能故障诊断是设备运行的重要保障。然而,非平稳的运行工况使采集到的训练数据集呈现不完备的特点,导致基于数据驱动的模型仅能从中学习到极为局限的诊断知识,致使诊断准确率大幅下降。针对此问题,以生成扰动样本扩充原始数据集的完备性为目的,提出了标准自学习数据增强故障诊断方法。方法包含标准自学习和数据增强两个训练步骤,将一维卷积神经网络的训练过程看作模型自学习出评判扰动样本的标准,基于此标准,采用样本参数化与模型数据化方法生成扰动样本。两步骤交叉进行,不仅能生成扰动数据增强完备性,同时能获得非平稳工况下的故障诊断模型。此外,通过研究不同数据生成次序的样本差异,发现所提方法在生成数据时,距离大小的随机性与方向的随机性叠加,保证了生成样本的多样性。实验结果表明所提方法在不完备的训练数据集下诊断非平稳工况的样本具有有效性和优越性。
- 单位