摘要

改进了DeepTRE的实现,在保留DeepTRE验证能力的前提下大幅降低了DeepTRE的空间复杂度,以适应大规模数据集场景。在高铁运行环境识别场景中评估了改进后的DeepTRE,并与其他主流验证工具DLV和SafeCV对比。实验结果表明,改进后的DeepTRE工具的显存占用显著低于原DeepTRE工具,相较于其他神经网络验证工具,改进后的DeepTRE工具在具有较快验证速度的前提下拥有更优异的验证效果。