摘要

拥有庞大参数量的网络模型很难部署在智能手机、可穿戴智能设备等资源受限的移动设备上。从深度神经网络模型的基本原理出发,在现有压缩算法的基础上,采用优化剪枝策略与参数量化的方法相融合,提出了一种结果导向的数据驱动剪枝算法,利用低精度的量化算法来进一步压缩模型。使用VGGNet作为原始模型,在Kaggle猫狗图像和Oxford102植物样本集上进行微调。实验数据表明,使用本实验改进的方法,模型压缩的存储容量下降到113.1 MB,识别率提高到86.74%。