摘要
针对在线数据校正效果差的问题,提出了一种基于改进万有引力和支持向量机的数据校正方法.首先为了减小计算量,对万有引力算法中的适应度函数进行改进,利用改进的万有引力算法对影响支持向量机性能的重要参数进行优化.然后利用少数准确的离线试验数据对支持向量机回归模型进行训练,当在线监测的历史或实时数据不在回归模型允许偏差范围内时,通过回归模型对异常数据进行校正.最后通过实际数据对提出的方法进行验证,结果证明了该方法的可行性和有效性.
-
单位国网电力科学研究院武汉南瑞有限责任公司