摘要
跨境民族是指居住地“跨越”了国境线,但又保留了原来共同的某些民族特色,彼此有着同一民族的认同感的民族,对于跨境民族文化中涉及到的文本分类问题可以看作领域文本细分类任务,但是,目前面临类别标签歧义的问题.为此提出一种融合领域知识图谱的跨境民族文化分类方法.首先把知识图谱中的知识三元组通过TransE模型表示为实体语义向量,并且把实体语义向量与BERT预训练模型得到文本中的词语向量相融合得到增强后的文本语义表达,输入到BiGRU神经网络中进行深层语义特征提取;然后通过构建注意力权重矩阵,对特征进行权重分配,以此来提升特征的质量,最终完成跨境民族文化分类模型的训练.实验结果表明,提出的方法在跨境民族文化文本数据集上的F1值为89.6%,精确率和召回率分别为88.2%和90.1%.
-
单位自动化学院; 昆明理工大学; 昆明冶金高等专科学校