摘要
表情符号已成为网络语言重要组成部分,是分析社交媒体情感的主要特征之一.目前分析社交媒体情感符号的方法多针对Emoji,对颜文字的情感倾向没有相应分析.为获取中文媒体的多维度情感并分析热点话题的群体情感走向,本文以微博为例提出一种新的融合表情符号与短文本的多维情感分类方法.在该框架中,采用深度学习模型分析文本与Emoji组合部分、颜文字部分,分别计算两部分的7种情感强度,挖掘各部分与情感标签的深层次关联,并设计计算模型来反映语句包含的多维情感属性,实现对语句多维情感强度的检测.实验选择NLPCC2014数据集和爬取的带有颜文字的微博数据集进行验证,实验证明当文本与Emoji组合、颜文字占比分别为0.6和0.4时情感分类效果最好,且含颜文字的语句情感分类性能指标始终高于不含颜文字的语句,这表明融合表情符号和短文本的形式有效提高了情感检测精度.该方法为研究群体情感趋势提供了更细粒度的分析,为中文社交媒体的情感分析提供了新思路.
- 单位