摘要
本文针对基本的蝴蝶优化算法存在收敛速度慢、精度低和易陷入局部最优等缺陷,提出一种改进的蝴蝶优化算法.首先通过实验分析参数对算法的影响,其次融入差分进化策略和精英策略,通过10个标准测试函数进行测试,结果表明,改进算法在8个测试函数中均找到了理论最优解,其收敛速度、精度和鲁棒性均优于基本的蝙蝠算法(BA)、花朵授粉算法(FPA)、布谷鸟算法(CS)、融合差分进化算法的花朵授粉算法(DEFPA)、蝴蝶算法(BOA)和融合差分进化算法的蝴蝶算法(DEBOA),且寻优性能得到大幅度提升;同时对4个非线性方程的求解也验证了该算法的有效性.
- 单位