摘要
针对矿山挖掘机发动机工作机理复杂、故障诊断效率低且精度不高的问题,提出了一种基于IFOA优化RotGBM的矿用挖掘机发动机故障诊断方法。首先利用随机森林-递归特征消除法(RF-RFE)对采集的挖掘机发动机故障数据进行特征提取,剔除冗余不相关特征;其次提出了一种改进的果蝇优化算法(IFOA)对LightGBM进行超参数寻优;然后融合旋转森林和LightGBM生成RotGBM,构建了新的故障诊断模型;最后利用某矿山挖掘机发动机故障数据对模型进行了验证,并与其他常用方法进行了性能对比分析。仿真结果表明:所提方法的诊断性能优于其他诊断方法,能达到98.31%的诊断精度,0.22%的误报率和2.5%的漏检率,满足矿山挖掘机发动机的故障诊断要求。
- 单位