摘要
为解决现有安全防护装备检测技术动态性、协同性不足的问题,基于深度学习,提出一种建筑工人高空作业安全防护装备的检测新方法;该方法以轻量化网络MobileNetV2置换YOLOv4的主干特征提取网络,实现动态视频状态下安全帽与安全带的综合检测;并开展测试,检验该方法的有效性。结果表明:该检测方法在中央处理器(CPU)运行环境下,检测速度增快2.7倍;在图形处理器(GPU)运行环境下,对于单目标、多目标和小目标的单帧视频检测速度能保持在25~27 ms,同时能取得91.57%、89.69%和86.63%的平均精度。
- 单位