摘要
针对腹部CT图像中淋巴与周围结构相似、对比度低、难识别导致淋巴分割精度较低的问题,提出一种基于空洞卷积和双通道注意力机制的改进密集U型对称语义分割模型D-DenseUnet。将空洞卷积和双通道注意力机制嵌入密集块连接的U型网络结构中,提升模型提取整体特征的能力;为了缓解数据不平衡问题,采用复合损失函数作为改进的密集U型模型D-DenseUnet的损失函数,结合数据扩增和早停法防止过拟合,通过余弦退火衰减学习策略进行优化,最终实现腹膜后淋巴分割。实验结果表明,所提的分割模型在腹膜后淋巴CT图像中能够较好分割淋巴,平均相似系数、交并比和召回率分别为0.796,0.804,0.679,优于传统的Unet网络和密集U型DenseUnet网络。
-
单位西南科技大学; 绵阳市中心医院