摘要
针对工程优化设计中隐式函数和高计算量困难,提出了支持向量机与改进交叉熵算法的组合优化算法。采用在设计变量空间内分布更为均匀的拉丁重心Voronoi结构抽样方法(Latinized centroidal Voronoi tessellation,LCVT)获得试验点,进而利用支持向量机得到高精度的代理模型。同时采用改进交叉熵方法,引入"全局精英样本"与"局部精英样本"概念,构建新的参数更新策略,以充分提取迭代过程中的隐含的有用信息。同时增加变异操作避免陷入局部最优。通过2个数值算例验证改进交叉熵支持向量机方法优于传统交叉熵支持向量机方法,利用1个工程算例验证改进交叉熵支持向量机方法在工程领域的可行性。
- 单位