摘要
主通风机切换过程中,取压风量测量作为监测井下供给风量的主要手段,是矿井主扇通风系统安全、稳定与经济运行的重要保障.然而,由于取压孔极易出现堵塞现象,需要频繁维护,导致无法实时测量井下供给风量,难以实现主通风机切换过程的闭环优化控制.同时,随着隐含层节点数的增加,基于随机配置网络(Stochastic configuration network,SCN)的估计模型存在过拟合和泛化能力差的缺点.为了解决上述问题,结合正则化(Regularization, R)技术,本文提出一种新型的改进SCN算法,即RSC算法,用于井下供给风量的建模.基准回归分析和工业实验表明:与SCN方法相比,建立的RSC模型具有较高的模型精度和较好的泛化性能.
- 单位