基于矩阵范数优化理论的用电数据质量提升算法

作者:杨挺; 孙兆帅; 季浩; 叶芷杉; 耿毅男
来源:中国电机工程学报, 2022, 42(10): 3501-3512.
DOI:10.13334/j.0258-8013.pcsee.210973

摘要

用电数据是智能电网大数据重要组成部分,也是基于人工智能方法进行负荷预测、需求响应以及台区线损治理和反窃电的基础样本数据来源。但用电信息采集设备工作环境复杂,用电数据缺失异常问题不可避免,严重影响数据驱动的效果。该文针对用电大数据存在的数据缺失、异常噪声等低质量问题,提出一种基于多范数优化的用电数据质量提升新算法,其中针对数据缺失和稀疏脉冲等多种现场采集噪声,采用核范数/1-范数/F-范数优化的低秩矩阵恢复模型和交替方向乘子算法求解,实现缺失数据恢复和异常噪声滤除,提高用电数据质量。所提方法具有不需要先验知识的训练,计算复杂度低的优势。算例结果表明,该文方法可以提高缺失数据恢复精度、改善数据质量,并且通过基于人工智能长短期记忆神经网络(long short term memory,LSTM)方法的短期负荷预测实验证明其可有效提高预测精度,对电力系统基于数据驱动的新兴高级应用具有良好的实际意义。