摘要

为解决传统网络质量KQI数据难以提取有效特征的问题,提出一种融合CNN和LSTM的网络质量KQI数据特征提取与预测方法。首先,分别采用CNN和LSTM获取KQI数据的特征表述和隐含层特征向量;然后引入Soft Attention Model来获得注意力分配概率分布;再将注意力分配概率分布与隐含层特征向量加权求和得到融合特征表达,从而得到数据的融合特征表达——空间维度和时间维度,并以多步预测的方法验证融合特征的有效性。研究表明,本文提出的算法能够有效预测、定位用户投诉问题,网优部门可根据实时的诊断结果,结合设备优化充分改善现有的网络质量,实现网络质量的主动干预,提升用户满意度。