摘要
基于参数关联特征分析原理、卷积神经网络(CNN)智能预测方法、核主成分分析(KPCA)非线性降维原理的一体化融合表征方法等研究,提出1套基于机器学习的深层页岩有利储集层预测方法。该方法包括5个步骤:(1)基于皮尔逊相关系数分析岩心和测井数据的高维关联特征。(2)利用KPCA非线性降维方法简化表征复杂高维数据,以准确、高效地揭示有利储集层的岩心和测井响应规律。(3)利用CNN和测井数据训练并验证与地下储集层近似的模型。(4)利用CNN和地震数据智能预测有机碳含量、含气量、脆性、地应力等有利储集层参数,有效解决储集层预测非线性复杂特征提取难题。(5)利用KPCA剔除复杂冗余信息,挖掘有利储集层大数据特征,一体化融合表征各类参数,实现储集层综合评价。该方法用于预测四川盆地威荣页岩气田奥陶系五峰组—志留系龙马溪组页岩有利储集层的空间展布,结果与岩心、测井、产能等实际数据高度吻合,证实该方法能为深层页岩气勘探开发提供有效技术支撑。
- 单位