摘要

为了提高对供应链融资中小企业信用风险预测的精度,在通过对中小企业信用风险评价研究基础上集成机器学习算法构建了能够提高信用风险预测的组合模型。该模型采用支持向量机(Support vector machine,SVM)建立供应链中小企业信用风险分类预测模型,并引入信息增益(Information gain,IG)提取对预测结果有显著贡献的特征变量,优化模型特征输入。在与其他模型的对比实验中可知,采用IG-SVM模型预测的测试样本精确度为97.62%,比单一SVM模型精度提高8.97%。采用IG进行特征优化,能进一步提高SVM模型的预测能力。