摘要
针对协同过滤推荐算法中数据稀疏、冷启动与噪声用户对推荐质量的严重影响,该文将用户-项目评分数据与用户信任关系数据相结合;提出一种融合偏置的动态专家信任推荐算法(BDETA),首先根据用户信任关系数据进行社区划分,获取用户间显式信任值;其次从社区中用户-项目评分数据获取可信度、隐式信任值;通过结合用户间可信度、显式信任值、隐式信任值动态确定专家信任因子,根据用户的推荐能力为每个社区确定专家数据集;最后结合用户不同评分标准进行评分预测。在真实数据集FilmTrust的实验结果中,能够有效地解决协同过滤中冷启动与数据稀疏问题,可更好地满足用户的个性化推荐需求,并且在推荐系统常用评价指标MAE与RMSE中有着不错的表现。
- 单位