摘要
传统雷达高分辨一维距离像(High-resolution Range Profile,HRRP)目标识别方法只利用目标幅度信息而丢失其相位信息,这势必会造成信息不完备。为解决此问题,提出将深度极限学习机从实数域扩展到复数域,以有效提取复HRRP序列的深层潜在结构信息。同时为更好地保持数据间的邻域信息,将流形正则化引入到网络模型训练过程中,提出流形正则深度复极限学习机。在雷达暗室测量数据上的实验结果表明,所提算法相比常用的深度学习模型具有更好的识别效果和更快的训练速度,验证了算法的有效性。