摘要

对结合独立分量分析(independent component analysis,简称ICA)和遗传算法(genetic algorithm,简称GA)的运动想象脑电(motor imagery electroencephalogram,简称MI-EEG)特征检测及其优化方法开展研究.设计了基于ICA的MI-EEG分类算法.在此基础上,针对不同受试个体,用GA算法对运动想象诱发的事件相关去同步(event-related desynchronization,简称ERD)频段进行优化选择,用以改善运动想象脑-机接口(brain-computer interface,简称BCI)系统的识别率.实验结果表明,基于ICA的GA算法特征优化方法具有较好的可靠性和实用性,可用于在线BCI的设计与实现.