摘要
目的头肩检测由于抗遮挡能力强、计算需求低,常用于复杂场景中的人体检测。针对嵌入式头肩检测中常用的运动检测和手工模型匹配方法检测精度较低、对不同姿态和人体外观适应性较差的问题,提出了使用聚合通道特征的嵌入式实时人体头肩检测方法。方法首先分析多种行人检测与人体姿态数据集,从中生成多姿态、多视角的人体头肩样本集;然后基于图像的聚合通道特征,使用Ada Boost算法通过多个阶段的训练,得到基于增强决策树的头肩图像分类器;接下来,在快速特征金字塔算法的基础上,针对ARM-Linux平台,利用多核并行和单指令多数据流技术,加速图像特征金字塔的计算;最后,进行多线程的滑动窗口检测,利用头肩图像分类器识别每个检测窗口,并通过非极大值抑制(NMS)算法优化检测结果。结果重新标注了INRIA验证数据集中的头肩样本,采用本文训练得到的头肩图像分类器进行检测,通过样本漏检率、每图片平均误检率以及ROC(receiver operating characteristic)曲线评估检测效果。对INRIA数据集中高度≥50像素的头肩目标的对数平均漏检率为16. 61%。此外,采集了不同场景中多种姿态、视角下的头肩图像,以验证分类器的适应性,结果表明该分类器能够良好检测多姿态、多视角、受遮挡以及不同光照情况下的头肩目标。但由于检测器感受野局限于头肩区域,对少量疑似头肩样本的图像区域存在误检测。在嵌入式平台(树莓派3B)中,经过优化的头肩检测程序,对640×480像素分辨率的图像,特征计算耗时约213 ms;对单个包含正样本的检测窗口,分类耗时约2 ms。整体检测效率能够满足视频流实时检测的需求。结论本文基于聚合通道特征进行人体头肩检测,采用种类丰富、标注准确的头肩训练样本,使用Ada Boost算法学习头肩图像的聚合通道特征,得到的头肩图像分类器适应性强,硬件性能要求低,能够良好检测多视角、多姿态的人体头肩图像,并具备在嵌入式平台上实时检测视频流的能力,应用场景广泛。
-
单位华中科技大学; 自动化学院; 图像信息处理与智能控制教育部重点实验室