摘要

自然梯度算法由于良好的分离性能在盲源分离中占有重要的地位,但该算法基于固定步长时,无法很好兼顾收敛速度和稳态误差.本文借鉴自动化控制的PID(Proportion Integration Differentiation)算法,提出一种与分离状态紧密结合的变步长学习率算法.由于完成分离的信号峭度累积量是一个固有值,分离过程的信号峭度累积量与固有值将有一个不断减小的误差值.该算法以指数函数值来体现该误差值.再利用该误差构成比例微分的变步长算法,其中的步长初始值就相当于控制误差的比例值,而误差的微分项则得到加速的调整值.该算法仿真实验结果与固定步长自然梯度盲源分离算法的仿真实验结果对比:对应于初始步长的一个最大值和一个最小值,该算法的两次迭代次数均低于采用固定步长算法的迭代次数,并且对于不同类型信号在两次迭代次数间的差值约1040次,而两种算法的稳态误差是相同的.

  • 单位
    福建师范大学福清分校