摘要
针对已有的混合负载(HTAP)下物化视图异步增量维护任务生成算法主要面向多记录,无法面向单记录生成HTAP物化视图异步增量维护任务,导致磁盘IO开销的增加,进而降低HTAP物化视图异步增量维护性能的问题,提出面向单记录的HTAP物化视图异步增量维护任务的生成方法。首先,建立面向单记录的HTAP物化视图异步增量维护任务生成的效益模型;然后,基于Q-learning设计面向单记录的HTAP物化视图异步增量维护任务的生成算法。实验结果表明,所提算法在实现面向单记录生成HTAP物化视图异步增量维护任务的基础上,将平均每秒读写操作次数(IOPS)、平均CPU利用率(2核)和平均CPU利用率(4核)至少分别降低了8.49次、1.85个百分点和0.97个百分点。