针对差分进化算法探索能力不足、收敛慢等问题,提出一种基于高斯分布估计的对位差分进化算法.该算法在生成对位种群的同时还生成一个基于高斯分布估计的新种群,意在更充分地搜索解空间.在不满足跳转条件的情况下,算法给出一种基于高斯分布估计的种群跳转,增加了种群多样性.在选择操作时,将所有父代和子代个体混合起来择优选择,减少了部分优秀解和优秀基因的流失.最后在CEC2014标准函数中进行测试,与其他算法进行比较,验证了所提出的算法具有更好的搜索能力和收敛性.