针对雾天场景图像恢复过程中图像清晰度下降的问题,提出了一种结合残差学习和跳跃连接的图像去雾算法。使用清晰图像与对应的合成雾天图像构建残差网络,残差学习能够避免由于网络层数的不断加深而带来的梯度弥散、特征丢失等问题;跳跃连接结构极大地丰富了图像在重建去雾图像时的特征维度,并且弥补了纹理信息恢复的不足。实验结果表明,与目前经典的去雾算法相比较,文中去雾算法在合成雾天图像数据集和在自然雾天图像上,恢复的图像都具有较高的清晰度和对比度。