摘要
针对葡萄叶片病害检测漏检率高,检测效果不佳的问题,提出了一种基于YOLOv4模型改进的葡萄叶片病害识别算法YOLOv4-PSA-CA.改进算法引入PSA(Pyramid Split Attention)模块取代YOLO4网络中原有的3×3的卷积,实现多尺度特征提取;将CA(Coordinate Attention)模块嵌入颈部网络中,获取更丰富的跨通道信息和位置信息.为了验证改进算法的有效性,选取葡萄叶片常见的4种病害作为检测对象制作数据集,改进的YOLOv4算法在此数据集上平均准确率均值(mAP)达到84.07%,比原YOLOv4算法mAP提升了4.04%.实验结果表明,改进算法能够在实验环境和自然环境下对葡萄叶片病害进行有效检测,为葡萄病害及时精准防控提供了依据.
- 单位