摘要

为了进一步提升基于核范数和F范数最小化的子空间聚类算法的性能,使用加权核范数扩展上述两种范数.提出的算法中含有一个参数γ,当γ=0时,可得到核范数;当γ=1时,可得到F范数;当0<γ<1时,可得到介于核范数和F范数之间的范数.采用交替方向乘子方法和线性交替方向乘子方法求解所提算法的目标函数,并由此得到了2个基于加权核范数最小化的低秩子空间聚类算法.利用Extended Yale B人脸数据集、MNIST手写字符数据集和USPS手写字符数据集进行实验.实验结果表明:和现有的子空间聚类方法相比,所提算法可以得到较高的聚类精度.