摘要

手部精细动作能力是老年人运动机能的重要表现之一,对其进行量化评估,有助于全面评估老年人的运动能力,促进健康养老产业发展。提出了一种基于惯性传感器的手部精细动作能力评估分级方法,基于佩戴在拇指、食指上的惯性传感器采集的数据,分析、提取时域和频域内均方根值、功率峰值等指标,采用K近邻(KNN)、支持向量机(SVM)、神经网络(BP)和RUSBoost算法等4种常见的机器学习分类算法构建手部精细动作能力分级评估模型,并进行测试验证。结果表明,采用RUSBoost算法构建的模型识别率为90.63%,可以有效地对手部精细动作能力进行评估分级。