摘要
为提高光伏发电功率的预测精度,提出一种优化变分态分解(VMD)、多策略改进黏菌优化算法(MISMA)和深度混合核极限学习机(DHKELM)的短期光伏功率组合预测方法。首先,利用VMD分解技术将不同天气类型的功率数据分解成多个模态分量,为避免模态分量间的频率混淆,使用狩猎者(HPO)算法优化VMD的关键参数-分解层数和惩罚因子;然后,针对不同天气类型分解的各分量建立DHKELM预测模型,并采用MISMA优化DHKELM模型的超参数;最后,将各模态分量预测结果求和重构作为最终预测结果。利用新疆某光伏电站的实际数据进行实验分析,实验结果表明:该方法在不同天气类型下均能实现较好的预测效果,预测精度明显优于单一预测模型,与其他方法对比,验证了该方法的有效性。
-
单位新疆大学; 昌吉学院