摘要
图像在成像过程中经常会产生模糊与噪声等多种复杂的降质问题,针对同时存在模糊与噪声的图像复原问题,提出一种多先验约束正则化模型图像复原方法。图像组稀疏表示能够很好的去除图像模糊,图像自相似性的非局部均值理论能够很好的抑制图像噪声,因此引入组稀疏约束项与非局部均值自相似约束项,构建一种新的图像复原模型,根据图像组稀疏与非局部均值自相似性先验知识求解清晰图像。实验选择不同自然模糊影像、真实遥感影像以及水下模糊影像,并对比了组稀疏算法、盲去卷积算法、非局部均值算法与比值稀疏约束算法。针对含有不同类型模糊与噪声影像,本算法实验结果PSNR值平均提高2.17 dB、2.08 dB、2.14 dB,充分说明本算法在去除图像模糊的同时抑制了图像噪声,达到提高图像质量的目的。
- 单位