摘要

随着互联网时代的不断发展,互联网上的信息量不断增多,“信息过载”等相关问题愈发严重,从而导致用户很难快速地获取到有用的信息,因此推荐系统应运而生。推荐系统可以预测用户的需求并推荐给用户其最可能喜欢的内容,来缓解人们从海量信息中做出选择的烦恼。推荐算法是推荐系统的核心,它完全可以决定一个推荐系统的性能。推荐准确度及可解释性是推荐算法目前面临的两大难题。可评判推荐算法是对话推荐算法的一种,在预测出项目的同时,也及时给出推荐项目的理由,并且为用户提供一个重新推荐的机会,用户通过对解释项进行评判来使推荐系统重新预测出商品,可有效解决上述两个问题。该文首先基于变分推断与神经协同过滤相结合的思想,对算法和模型进行了形式化的定义和理论推导,并且从概率的角度出发使用贝叶斯神经网络实现了该模型。通过与其他可评判推荐算法进行实验对比,证实了该模型的许多推荐指标已经达到了目前最先进的水平。