摘要
本发明公开了一种融合知识图谱和用户交互的图模型智能商品推荐方法,其步骤包括:1、采集用户对商品的历史交互记录数据,构建用户商品交互矩阵Y用于训练推荐模型,并构建用户商品交互二分图;2、采集商品属性特征及属性之间的关联特征,利用先验知识构建知识图谱;3、构建融合知识图谱和用户交互的推荐模型,选取合适的损失函数来优化模型参数和特征向量;4、利用推荐模型预测用户对未交互过的商品未来产生交互的概率,选择交互概率最大的商品推荐给用户,从而完成商品推荐任务。本发明结合了知识图谱和交互二分图上的图卷积操作,可以更充分的捕捉知识图谱所携带的语义、结构信息,从而实现更准确的推荐效果。
- 单位