摘要

本文构建了一种基于编码器-解码器结构的网络结构,用于处理手写数学表达式识别的问题。经过对不同卷积神经网络的测试,整个网络先用密集连接卷积网络提取图片特征,再引入一个门限循环单元来形成编码器-解码器结构来处理图片特征,并在其中使用带有Coverage的2D注意力机制。基于CROHME竞赛提供的手写数学表达式数据集,结果达到了17.1%的字错误率和36.5%的识别率,验证了该模型的有效性。

全文