摘要
颜料的分类识别是古代壁画进行保护修复的基础,多光谱成像方法能够无损快速地获取壁画颜料的光谱图像数据并进行分析。传统利用卷积神经网络进行特征提取的算法中连续的卷积和池化操作会丢失壁画多光谱图像的部分特征信息,使得图像细节无法重建,导致分类图像边界不平滑。针对该问题,提出了一种基于多尺度特征融合的三维空洞卷积残差神经网络对壁画多光谱图像进行颜料分类。首先,在卷积核中引入空洞结构提高卷积核的感受野来提取不同尺度信息,避免池化操作所导致的部分特征丢失;其次,使用特征融合的方法融合不同尺度的特征图,增加多尺度特征的结构层次;最后,引入残差学习模块避免网络层数加深导致的梯度消失问题,重建完整的边缘信息。实验结果表明,所提方法在模拟壁画多光谱图像数据集上的总体精度和平均精度分别达到了98.87%和96.89%,与各对照组相比,不仅具有更好的分类精度,而且得到了边界更清晰的分类图像。
- 单位