一种知识引导的基于中医学信息的药材推荐方法(英文)

作者:金哲; 张引*; 苗嘉旭; 杨易; 庄越挺; 潘云鹤
来源:Frontiers of Information Technology & Electronic Engineering, 2023, 24(10): 1416-1430.

摘要

在中国几千年历史中,中医一直是人们关注的焦点。近年来,随着人工智能技术的兴起,部分研究开始以数据驱动的方式学习中医的方剂,即根据病人的症状推荐一组药材。现有大多数药材推荐模型忽略了中医领域的知识,例如药材和症状之间的关系,中药药方形成逻辑,等等。本文提出一种以知识为引导、结合中医学信息的药材推荐方法。本文使用的知识包括从中医典籍及处方中提取的知识图谱,以此得到症状和药材之间的交互和共生关系。利用这些信息,基于图注意力网络提取症状和药材的特征向量。在此基础上,将处方学等中医学信息加入到预测层中,提高了模型对药材的预测能力。最后,在中医处方数据集上进行的实验表明,该方法优于目前主流的药材推荐算法。