目前有许多处理正面视觉人脸的识别方法,当有充分数量的有代表性的样本时,能取得较好的识别效果。然而当处理单样本识别问题时,现有的许多方法的识别率将明显下降或甚至不适用。为了加强单训练样本的分类信息,训练样本与其基于受扰动的奇异值的重构图组合成新样本,Fourier频谱作为人脸识别特征,在ORL人脸库上的实验结果表明了该方法的有效性。