摘要
为提高GPS接收机的定位性能,首先对采样粒子数目进行研究,发现并不是采样粒子数目越多粒子滤波(Particle Filter,PF)的滤波效果就越好。然后针对PF算法中存在的粒子退化现象,研究PF算法与扩展卡尔曼滤波算法(the Extended Kalman Filter,EKF)处理加入了高斯噪声干扰的非线性模型,仿真并分析得到,PF在处理高斯非线性模型的时候滤波效果要优于EKF算法,试验中发现PF算法在粒子数目较大的时候滤波效果远远偏离真实值,试想通过EKF算法计算取得的均值和方差来引导PF算法进行下一步采样,以此建立较好的重要性密度函数。试验表明经过扩展卡尔曼滤波改进的粒子滤波算法相比PF算法更加精确,平缓性更好。
-
单位自动化学院; 桂林电子科技大学; 长沙海格北斗信息技术有限公司