摘要
近年来,人脸表情识别研究因机器学习的引入取得了显著的进步,但由于光照变化、人脸姿态等原因使得人脸表情识别准确率一直不高。提出了一种基于混合注意力机制网络的方法,把通道注意力和空间注意力机制分离,增强网络的通道特征和跨通道相关性学习能力。在注意力机制后增加软阈值机制以抑制噪声,在网络损失函数中迭加类中心损失减小类内差异,通过预处理提高网络的泛化能力。实验结果表明,该方法在人脸数据集CK+和fer2013上准确率比主流方法更高,所用参数更少,收敛性更好。
-
单位南京理工大学紫金学院